微分形式不变性
什么是微分形式不变性呢?
设
,则复合函数
的微分为:
,
由于
,故我们可以把复合函数的微分写成

由此可见,不论u是自变量还是中间变量,
的微分dy总可以用
与du的乘积来表示,
我们把这一性质称为微分形式不变性。
例题:已知
,求dy
解答:把2x+1看成中间变量u,根据微分形式不变性,则

通过上面的学习,我们知道微分与导数有着不可分割的联系,前面我们知道基本初等函数的导数公式和导数的运算法则,那么基本初等函数的微分公式和微分运算法则是怎样的呢?
不定积分的概念
原函数的概念
已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有
dF'(x)=f(x)dx,
则在该区间内就称函数F(x)为函数f(x)的原函数。
例:sinx是cosx的原函数。
关于原函数的问题
函数f(x)满足什么条件是,才保证其原函数一定存在呢?这个问题我们以后来解决。若其存在原函数,那末原函数一共有多少个呢?
我们可以明显的看出来:若函数F(x)为函数f(x)的原函数,
即:F"(x)=f(x),
则函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,
故:若函数f(x)有原函数,那末其原函数为无穷多个.
不定积分的概念
函数f(x)的全体原函数叫做函数f(x)的不定积分,
记作。
由上面的定义我们可以知道:如果函数F(x)为函数f(x)的一个原函数,那末f(x)的不定积分就是函数族
F(x)+C.
即:=F(x)+C
例题:求:.
解答:由于,故=
不定积分的性质
1、函数的和的不定积分等于各个函数的不定积分的和;
即:
2、求不定积分时,被积函数中不为零的常数因子可以提到积分号外面来,
即:
http://www.aihuau.com/lzzgs/gs4/4.1.htm
定积分的概念
我们先来看一个实际问题———求曲边梯形的面积。
设曲边梯形是有连续曲线y=f(x)、x轴与直线x=a、x=b所围成。如下图所示:
现在计算它的面积A.我们知道矩形面积的求法,但是此图形有一边是一条曲线,该如何求呢?
我们知道曲边梯形在底边上各点处的高f(x)在区间[a,b]上变动,而且它的高是连续变化的,因此在很小的一段区间的变化很小,近似于不变,并且当区间的长度无限缩小时,高的变化也无限减小。因此,如果把区间[a,b]分成许多小区间,在每个小区间上,用其中某一点的高来近似代替同一个小区间上的窄曲变梯形的变高,我们再根据矩形的面积公式,即可求出相应窄曲边梯形面积的近似值,从而求出整个曲边梯形的近似值。
显然:把区间[a,b]分的越细,所求出的面积值越接近于精确值。为此我们产生了定积分的概念。
定积分的概念
设函数f(x)在[a,b]上有界,在[a,b]中任意插入若干个分点
a=x0<x1<...<xn-1<xn=b
把区间[a,b]分成n个小区间
[x0,x1],...[xn-1,xn],
在每个小区间[xi-1,xi]上任取一点ξi(xi-1≤ξi≤xi),作函数值f(ξi)与小区间长度的乘积f(ξi)△xi,并作出和,
如果不论对[a,b]怎样分法,也不论在小区间上的点ξi怎样取法,只要当区间的长度趋于零时,和S总趋于确定的极限I,
这时我们称这个极限I为函数f(x)在区间[a,b]上的定积分,
记作。
即:
关于定积分的问题
我们有了定积分的概念了,那么函数f(x)满足什么条件时才可积?
定理(1):设f(x)在区间[a,b]上连续,则f(x)在区间[a,b]上可积。
(2):设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在区间[a,b]上可积。
定积分的性质
性质(1):函数的和(差)得定积分等于它们的定积分的和(差).
即:
性质(2):被积函数的常数因子可以提到积分号外面.
即:
性质(3):如果在区间[a,b]上,f(x)≤g(x),则≤ (a<b)
性质(4):设M及m分别是函数f(x)在区间[a,b]上的最大值及最小值,则 m(b-a)≤≤M(b-a)
性质(5):如果f(x)在区间[a,b]上连续,则在积分区间[a,b]上至少存在一点ξ,使下式成立:
=f(ξ)(b-a)
注:此性质就是定积分中值定理。
级数的概念及其性质
需要补充数列概念
我们在中学里已经遇到过级数——等差数列与等比数列,它们都属于项数为有限的特殊情形。下面我们来学习项数为无限的级数,称为无穷级数。
无穷级数的概念
设已给数列a1,a2,…,an,…把数列中各项依次用加号连接起来的式子a1+a2+…+an+…称为无穷级数,简称级数.记作:或,即:=a1+a2+…+an+…,数列的各项a1,a2,…称为级数的项,an称为级数的通项.
取级数最前的一项,两项,…,n项,…相加,得一数列S1=a1,S2=a1+a2,…,Sn=a1+a2+…+an,… 这个数列的通项Sn=a1+a2+…+an称为级数的前n项的部分和,该数列称为级数的部分和数列。
如果级数的部分和数列收敛:,那末就称该级数收敛,极限值S称为级数的和。
多元函数的概念
我们前面所学的函数的自变量的个数都是一个,但是在实际问题中,所涉及的函数的自变量的个数往往是两个,或者更多。
例:一个圆柱体的体积与两个独立变量r,h有关。`
我们先以二个独立的变量为基础,来给出二元函数的定义。
二元函数的定义
设有两个独立的变量x与y在其给定的变域中D中,任取一组数值时,第三个变量z就以某一确定的法则有唯一确定的值与其对应,那末变量z称为变量x与y的二元函数。
记作:z=f(x,y). 其中x与y称为自变量,函数z也叫做因变量,自变量x与y的变域D称为函数的定义域。
关于二元函数的定义域的问题
我们知道一元函数的定义域一般来说是一个或几个区间.二元函数的定义域通常是由平面上一条或几段光滑曲线所围成的连通的部分平面.这样的部分在平面称为区域.围成区域的曲线称为区域的边界,边界上的点称为边界点,包括边界在内的区域称为闭域,不包括边界在内的区域称为开域。
如果一个区域D(开域或闭域)中任意两点之间的距离都不超过某一常数M,则称D为有界区域;否则称D为无界区域。常见的区域有矩形域和圆形域。如下图所示:
例题:求的定义域.
解答:该函数的定义域为:x≥,y≥0.
二元函数的几何表示
把自变量x、y及因变量z当作空间点的直角坐标,先在xOy平面内作出函数z=f(x,y)的定义域D;再过D域中得任一点M(x,y)作垂直于xOy平面的有向线段MP,使其值为与(x,y)对应的函数值z;
当M点在D中变动时,对应的P点的轨迹就是函数z=f(x,y)的几何图形.它通常是一张曲面,其定义域D就是此曲面在xOy平面上的投影。
高等数学在线教程
同济大学高等数学精品课程
上海交大高等数学课程
高等数学复习教程
